
Distribution Category:Mathematics andComputer Science (UC-405)ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439|||||{ANL-93/40|||||{Using a Transfer Function to Describe theLoad-Balancing ProblembyAndrew J. ConleyMathematics and Computer Science Division
November 1993This work was supported by the O�ce of Scienti�c Computing, U.S. Department of En-ergy, under Contract W-31-109-Eng-38, and by the NSF under Cooperative AgreementNo. CCR-9120008.

ContentsAbstract 11 Introduction 12 De�nitions 13 The Model 34 Consequences of the Model 35 Implications 46 Conclusion 5References 5

iii

Using a Transfer Function to Describethe Load-Balancing ProblembyAndrew J. ConleyAbstractThe dynamic load-balancing problem for mesh-connected parallel computers can beclearly described by introducing a function that identi�es how much work is to betransmitted between neighboring processors. This function is a solution to an ellipticproblem for which a wealth of knowledge exists. The nonuniqueness of the solution tothe load-balancing problem is made explicit.1 IntroductionThe dynamic load-balancing problem for mesh-connected parallel processors can be clearlydescribed by an analogy with problems in vector calculus. Analysis of the equations allowsan analytic solution to be found. The analysis also shows that the solution of the load-balancing problem is not unique. The lack of uniqueness is the separate problem of problempartitioning.The crucial idea of this paper is in the introduction of a transfer function that representsthe transfer of work from one node to another. This transfer function can be computed withdirect methods or iterative schemes. The model of load balancing that I present includesthe iterative schemes of Cybenko [2] and others as a special case. Most important, thispaper connects the study of load-balancing with a wealth of information and experience inapplied mathematics.2 De�nitionsI assume the processors are laid out on a three-dimensional grid. (The results can beextended easily to one- and two-dimensional grids.) I label the nodes by their distance fromthe edge processors. For example, a processor in the left front bottom corner is labeled(0; 0; 0). Processor (l;m; n) is l processors from the left edge, m processors from the front,and n processors from the bottom. The coordinate directions, (x; y; z), are directions ofincreasing l, m, and n, respectively (see Figure 1).Now it is easy to de�ne the following:� Let Ll;m;n be the load at node (l;m; n).� Let T xl;m;n; T yl;m;n; T zl;m;n be the loads transferred to node (l;m; n) from nodes (l �1; m; n); (l;m� 1; n); (l;m;n� 1); respectively. When Tl;m;n refers to transfer of loadoutside the boundary of the machine, it is de�ned to be zero (i.e., T x0;m;n = 0).

���
���

������������������������������������6���- @@@I AAK XXXy ��)���
yz (4,0,0) (8,1,0)(8,2,3)

(0,0,0)xFigure 1: A three-dimensional mesh-connected parallel computer. Several computationalnodes are labeled. The load-balancing solution �nds the transfers of load between neigh-boring processors that will make the load on every processor the same.� Let Lbl;m;n be the load at node (l;m; n) after the load has been balanced.� De�ne the gradient of the load at each node as�@L@x �l;m;n = Ll+1;m;n � Ll;m;n�@L@y �l;m;n = Ll;m+1;n � Ll;m;n�@L@z �l;m;n = Ll;m;n+1 � Ll;m;nh~rLil;m;n = 0BBBB@ h@L@x il;m;nh@L@y il;m;nh@L@z il;m;n 1CCCCA :@L@x is de�ned to be zero at the rightmost nodes. @L@y is de�ned to be zero at thebackmost nodes. @L@z is de�ned to be zero at the topmost nodes.� Similarly, de�ne the
ux into a given node ash~r � ~T il;m;n = (T xl+1;m;n � Txl;m;n) + (T yl;m+1;n � T yl;m;n) + (T zl;m;n+1 � T zl;m;n):� De�ne ~r� ~T ash~r� ~Til;m;n = 0B@ (T zl;m+1;n+1 � T zl;m;n+1)� (T yl;m+1;n+1 � T yl;m+1;n)(Txl+1;m;n+1 � Txl;m;n+1)� (T zl+1;m;n+1 � T zl+1;m;n)(T yl+1;m+1;n � T yl;m+1;n)� (T xl+1;m+1;n � Txl+1;m;n) 1CA :2

� De�ne the discrete Laplacian. (Whenever I apply the Laplacian to a vector, I meanthe componentwise application of the Laplacian.)hr2fil;m;n = (fl+1;m;n + fl�1;m;n) + (fl;m+1;n + fl;m�1;n)+(fl;m;n+1 + fl;m;n�1)� 6fl;m;n:3 The ModelIn the following, I drop the subscripts. All the terms in the equations should be interpretedas being true at all points on the mesh at which the equations are de�ned.The change in the load (Lb � L) at any particular node equals the
ux of work into thenode (~r � ~T). Lb � L = ~r � ~T : (1)However, I wish the load Lb to be balanced after the workload has been transferred. Thisis the same as saying that the di�erence (of load) between any two nodes is zero, or, usingthe notation above, ~rLb = 0: (2)Lastly, I wish the workload not to be transferred around any particular loop of processors(e.g., work transferred from (0; 0; 0)! (0; 0; 1)! (0; 1; 1)! (0; 1; 0)! (0; 0; 0)). Hence, Irequire that ~r� ~T = 0: (3)Equation 3 can be substituted with other constraints (so-called gauge conditions), but thenEquation (4) in Section 4 is no longer valid.4 Consequences of the ModelTaking the gradient of Equation (1), I have~r(Lb � L) = ~r(~r � ~T)+~rLb � ~rL = ~r(~r � ~T)+ by vector identity for ~r� (~r� ~T)~rLb � ~rL = �~r � (~r� ~T) +r2 ~T+ by Equation 3 and by Equation 2�~rL = r2 ~T : (4)I refer to Equation (4) as the
ux di�usion equation. The boundary conditions require thattransfers outside the mesh be zero. This requirement leads to the Poisson equation (4) forthe transfer function with Dirichlet (zero) boundary conditions.3

5 ImplicationsThe load-balancing problem is one of computing the transfer of load necessary for the loadto be balanced. As the
ux di�usion equation (4) makes clear, the transfer function (~T) isthe solution of an elliptic problem. The many di�usion schemes that have been proposedare iterative schemes for solving equations (1{2); however, they may violate condition (3).One naive but e�ective (nondi�usive) load-balancing scheme might be the following. Everyprocessor balances its load with the loads of all the nodes to its left and right (in its line).Then every processor balances its load with the loads of all the nodes to its top and bottom.Finally, every processor balances its load with the loads of all nodes to its front and back.While this scheme does balance the load, it violates condition (3). Condition (3), however,is necessary in problems where the partitioning of the work is an important issue.The transfer function (~T) solving Equation (4) is not a unique solution to Equations (1)and (2). The condition (3) could be relaxed by choosing any ~A so thatr2� = L� Lb (5)~T = �~r�+ ~r� ~A; (6)in order to minimize communication costs during the computational algorithm for whichthe load is being balanced. The nonuniqueness of the transfer function is the partitioningproblem.The derivation of Section 4 has many other implications. By �nding a transfer functionthat describes the local transfer of load, each processor \knows" how much load it musttransfer to its neighbors. Only one local exchange of load is necessary. In the case of largeload imbalances, the transfer of load from a processor can be greater than the load on theprocessor. In this situation, a node can wait until it has received enough work to transferto its neighbors.If the architecture is such that the computational nodes are connected to the communi-cation network through communication processors (CPs) (where the CP can compute inaddition to communicating), then once the CP knows the load at its processor, the CPscan calculate what the transfers should be, without communicating with the computationalnodes.Equation (4) requires only one Poisson solve, namely,r2� = L � Lb (7)~T = �~r� (8)~n � ~r�(@) = 0: (9)The solution (�) can be computed as accurately as one wishes by any number of algorithmssince it is a Poisson solve. (Methods include fast Poisson, Jacobi, Gauss-Seidel, multigrid,domain decomposition, and SOR.) The accuracy of the solution determines the accuracyof the balancing. Solving Equations (7){(9) requires the same work as the inner loopcalculations of the algorithm introduced by Heirich and Taylor [1].Equations (7){(9) can be solved analytically in terms of the eigenfunctions, xj;k;p =cos(�jl=(L� 1)) cos(�km=(M � 1)) cos(�pn=(N � 1)), of the discrete Laplacian, where the4

number of processors on the grid is LMN . The indices (j; k; p) index the eigenfunctions,and the indices (l;m; n) index the processors on the grid. A Greens function formulationof the solution allows for only local transfer of load and no global solves of the Poissonequation. The Greens function formulation does require that the change in load at everyprocessor eventually be sent to every other processor on the grid.6 ConclusionBy using de�nitions of measurable quantities on a multiprocessor, the load-balancing prob-lem can be formulated in terms of the familiar Poisson equation. The solution of thisequation (for which there are many techniques) is a transfer function that describes exactlyhow much load must be transferred locally to balance the load.References[1] A. Heirich and S. Taylor. A parabolic theory of load balance. Caltech Computer ScienceTechnical Report, 1993.[2] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J. Par-allel Distrib. Comput., 7:279{301, 1989.

5

Distribution for ANL-93/40Internal:J. M. Beumer (60)A. J. Conley (10)F. Y. FradinG. W. PieperR. L. StevensC. L. WilkinsonTIS FileExternal:DOE-OSTI, for distribution per UC-405 (54)ANL-E Library (2)ANL-W LibraryManager, Chicago Operations Office, DOEMathematics and Computer Science Division Review Committee:W. W. Bledsoe, The University of Texas, AustinB. L. Buzbee, National Center for Atmospheric ResearchJ. G. Glimm, State University of New York at Stony BrookM. T. Heath, University of Illinois, UrbanaE. F. Infante, University of MinnesotaD. O'Leary, University of MarylandR. E. O'Malley, Rensselaer Polytechnic InstituteM. H. Schultz, Yale UniversityJ. Cavallini, Department of Energy - Office of Scientific ComputingF. Howes, Department of Energy - Office of Scientific Computing
6

